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1. Progress During Reporting Period 
During this period, we continued to develop the run-time system for our prototype enhanced MPI 
tools. The primary focus was on development of a more complete implementation of the error 
checking facility for standard MPI send and receive operations, including the ability to handle 
MPI derived data types. This effort conforms to the approach laid out in our proposal for the core 
project; it addresses objectives e.4.1, e.4.2, e.4.3, and e.4.5 in our work plan. 

In addition to the technical work, we took part in the following activities in relation to the work 
in this project: 

1. We submitted a proposal to Lincoln Laboratory under which Scientific Computing 
Associates, Inc. will investigate the use of networks of workstations for the MPI version of 
Lincoln Laboratory's signal processing library. We have received a purchase order and 
anticipate beginning this effort in February, 1998. While the work is not directly related to 
this SBIR project (since none of the technology from this project will be used), we do plan to 
examine the signal processing library as part of our assessment of "real" MPI codes. 

2. We submitted a request to Darpa for funding of the options associated with this SBIR project. 
According to the contract, the options are available for funding as of May 15,1998, although 
we anticipate that they may be delayed due to funds availability. 

1.1 Enhanced MPI Prototype Development 

1.1.1 Run-Time Error Checking 

The main focus of our effort in this period has been extension of the run-time error checking 
functionality to handle MPI derived data types. As noted in our previous report, run-time error 
checking is primarily intended to detect situations in which the sender and receiver disagree as to 
the interpretation of the contents of a message payload. The simplest sort of example might be 
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one in which the sender packs an integer followed by a float into a message, but the receiver 
unpacks a float followed by an integer. With the work done in this quarter, our prototype system 
is now able to detect errors involving MPI derived data types, either alone or in combination 
with standard MPI basic data types. For example, the system can detect the error in the following 
erroneous program: 

#include 
#include 

<stdio.h> 
"mpi.h" 

main(arge, argv) 
int arge 
char 

{ 
int 
float 
int 
char 

*argv[] ; 

my_rank; 
f[30] ; 
g[10] ; 
c; 

MPI_Datatype newtl, newt2; 
MPI_Status status; 
int block_lengths[3]; 
MPI_Aint displacements[3]; 
MPI_Datatype   typelist[3]; 
MPI_Aint base_address; 
MPI_Aint address; 

MPI_Init(&argc, Sargv); 
MPI_Comm_rank(MPI_C0MM_W0RLD, &my_rank); 

block_lengths[0] = 20; 
block_lengths[1] = 10; 
block_lengths[2] = 1; 

MPI_Address(base_address, &base_address); 
MPI_Address(f, Saddress); 
displacements[0] = address 
MPI_Address(g, Saddress); 
displacements[1] = address 
MPI_Address(&c, Saddress); 
displacements[2] = address 

typelist [0] = MPI_FLOAT; 
typelist[1] = MPI_INT; 
typelist[2] = MPI_CHAR; 

MPI_Type_struct(3, block_lengths, displacements, typelist, Snewtl); 
MPI__Type_commit (Snewtl) ; 

base_address; 

base_address ; 

base_address; 

MPI Send((void *)base_address, 1, newtl, my_rank, 3, MPI_COMM_WORLD); 

block_lengths[0] = 25; 
block_lengths[1] = 5; 
block_lengths[2] = 1; 

MPI_Type_struct(3, block_lengths, displacements, typelist, &newt2); 
MPI_Type_commi t(Snewt2); 

MPI_Recv((void *)base_address, 1, newt2, my_rank, 3, 
MPI_COMM_WORLD,Sstatus); 

MPI_Finalize(); 
return 0; 



When ran, the program generates the following output: 
Packing: (MPI_FLOAT:20)..(MPI_INT: 10) (MPI_CHAR:1) 
Packing type MPI_FLOAT(2), size 20 
Packing type MPI_INT(1), size 10 
Packing type MPI_CHAR(7), size 1 
Send 1 
Recv 1 
[derived.c:42];[derived.c:51] types out of sync. 

Note that most of these lines of output are debugging outputs that we use to make certain that our 
system is operating correctly. In actual use, the user would see only the last line, which indicates 
the file line numbers of the mismatched operations (lines 42 and 51 in this case). We are working 
on more descriptive messages to indicate the specific nature of the mismatch. 

At the present time, we only provide the error checking facility for invocations of MPI_Send () 
and MPI_Recv (), but we do not anticipate any difficulty in extending it to MPI's other variants 
of these operations. 

2. Planned Activities and Milestones 
We will continue the development of our MPI prototype software, focusing particularly on 
improvements in the runtime implementation and on better integration with standard MPI. The 
specific objectives in the next quarter are: 

1. Investigation of ways to improve run-time performance: We plan to study the MPICH 
implementation of MPI in order to identify opportunities where our language-based approach 
can lead to run-time improvements. Specifically, we will try to determine whether the run- 
time system can use information about message tags and/or variable types to allow it to 
exploit "customized" message handlers that are significantly more efficient than the generic 
message handlers used by default. The idea would be to generate the handlers automatically 
at compile-time or link-time, much as is done for our Linda systems. 

2. Examination of MPI applications: We plan to obtain and begin working with a number of 
"real" MPI codes, with two goals in mind: 
a. We would like to better understand which portions of the full MPI system are really used 

in practice, so that we can refine the development plan for our prototype system, 
particularly with respect to the assessment of opportunities for enhancing run-time 
performance as noted above. 

b. We would like to assess the value of the work we have done so far by testing it on more 
complex applications than the simple test cases we have used so far. 

3. Administrative Information 
No significant problems have arisen in this period, and there are no areas of concern. The core 
portion of the project is on schedule with respect to technical development, and the cost is 
consistent with the expenditure plan. There were no changes in key personnel during this period, 
and there were no purchases of major equipment in this period. 

As noted above, we have requested that Darpa fund the two options associated with this SBIR 
project as of their originally requested start dates of May 15,1998. However, it is our 
understanding that there may have been some confusion as to the start dates for the option 



projects, with the result that funds may not be available on the original schedule in this fiscal 
year. Should Darpa so wish, it would be acceptable to delay the start of the option projects until 
funds are available at the beginning of the next fiscal year. Such a delay will not interfere with 
our ability to retain the services of key personnel required to complete the option projects, since 
those personnel will remain active on the Core Project until October 1998 in any event. 

Personnel Hours 

Planned Actual 

Current Period 424 424 

Contract Since Inception 2482 2482 

Expenditures in current period: $ 49,583 (inclusive of fee) 

Expenditures since inception: $ 277,301 (inclusive of fee) 

Total funds committed: $ 374,733 

Estimated funds for completion of Core Project: $ 97,432 

Approximate quarterly breakout of anticipated payments from DARPA: 

$ 45,000 per calendar quarter through 2Q1998; 
$ 60,000 in 3Q1998; 
$16,211 in 4Q1998. 

Estimated date of completion of Core Project: October 15,1998 


